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The convergence of the method of generalized reaction proposed in 11) to solve contact problems with 
an unknown region of active interaction (with a free boundary) is proved with fairly general initial 
assumptions. An example of the combined cylindrical bending of two rectangular plates is given. 

l. WE WILL assume that the displacements u, and u, of two elastic components of a structure 
(rods, plates or shells) under certain loads lead to contact interaction between two compon- 
ents. We will assume that the deformation of each of these components is described by 
stationary linear equations and the functions u, and y, respectively 

(04 (p) = fr (p>, P E fli = Rnr 
(r~,jUi)(P)=O, PEaQ, jEl:ri, i= 1,2 (1.1) 

Certain operators in &(Q) (i = 1, 2) or other Hilbert spaces correspond to boundary-value 
problems (1.1). The regions in which these operators are defined are linear functions, which 
are continuously differentiable a sufficient number of times and satisfy boundary conditions 
(1.1). Hence, the solution of problems (1.1) reduce to the solution of the operator equations 

Aiu/=f,(P), PEQI, i= 1,2 (1.2) 

In most cases (and we will assume this below) the boundary-value problems are self- 
conjugate in Lagrange’s sense, while the operators are positive definite in dense sets of 
corresponding Hilbert spaces. The operators 4 can then be extended to self-conjugate 
operators. We will assume that this extension is carried out. 

Suppose the gap between thin-walled components in the region of possible contact Q, (a, c 
R, n &) is defined by the function A(P), P E Cl,,. Then the contact problem considered can be 
formulated as follows: 

AI ~1 =fi @‘I--xV’)H(P), PEfb 

Azu2 =fi (P)+x(P)H(P), PE522 

x(P)>O, PEs20 

ul(P)-~2(P)-A(P)(O, PEao 

x(P)[u, (P)-~2 (P)-A(P)] =O, PE% 

(1.3) 

(1.4) 
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The first relation (1.4) is the condition that the coupling should be one-sided, the second is 
the condition for non-penetration, and the third is the condition of supplementing flexibility: if 
x>O, we have y-y-A=0 and if y-y-A<O, we have x=0; H(P)=1 when Pen,, and 
H(P) = 0 when P e f&,. 

From Eqs (1.3) we have 

(1.5) 

Conditions (1.4) will be satisfied if x(P) satisfies the equation 

x(P)= [x-CY(U~-U~ +A)l+(P), CY’O, PEQ, (1.6) 

(the subscript plus indicates the positive part of the corresponding function (p, = X(cp+ I Q, I)). 

In fact, we see directly from (1.6) that the first condition of (1.4) is satisfied. We will further assume that 
the expression in the square brackets is negative. Then these brackets can be omitted, and we therefore 
obtain the condition 

u,-&,-A=0 (1.7) 

If the expression in the square brackets in (1.6) is negative 

we have 

x=0 

and we obtain the following condition from (1.8) 

u,-k,-A<0 

(1.8) 

(1.9) 

(1.10) 

It is obvious that the relations (1.7)-(1.10) ensure that conditions (1.4) are satisfied. 

Hence, we can consider the following system instead of (1.3) and (1.4) 

Alul =11-x, Azuz =fi +x, x= [x-a(~~-U, +A>]+ (1.11) 

The method of solving contact problems in mechanics with an unknown region of active 
interaction Q,* cQ, based on the use of (1.6) was called the method of generalized reaction in 
PI. 

If we assume that inverse operators 4:’ exist and are defined, then using (1.11) we obtain 
the following equation for the contact reaction 

x = [x-a: Q’(x)] + 

(@‘&A~‘cf~ +X)-Ai’cfi-X) +A) (1.12) 

We will assume that Ai are positive definite operators specified in a unit real Hilbert space 
L.&J) (Q = n, = Q, = CL&), i.e. 

(AiUpU) > $11~ Ii”, i=1,2 (1.13) 

We recall that these conditions guarantee that the inverse operators A;’ and A;’ are self- 
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conjugate, where 

(1.14) 

We will set up the functional with respect to Q’(x). We have 

Q(x)=%(AirCfi-X), fi-X)+%(Ai’ cf~ +X), f2 +X)+(X,A> (1.15) 

It is obvious that @(x) 2 0, if x E M(x 2 0}, and, consequently, the following exists 

inf ip (x) = @* 
XEM 

The functional a(x) is strictly convex. 
In fact, suppose x’f x”, while u,l, u,!’ are solutions of Eqs (1.3) corresponding 

reactions, i.e. u,! ?t u,!’ (i = 1, 2). Then 
to these 

x' t jc” 
@ (,, - ; cp (x’) - ; @ (x”) = 

= -l/s (Al (u:‘-ii:), ti:)--ii;) - ‘/* (AZ (u:‘-ti:),‘u:‘--ii: > < 0 

The functional Q(x) can be written in the form 

~(x)=1JL~Gx,x~+~q.x~+(po 

G=A;’ +A;‘, g=A;‘f*-A,‘fl +A 

~o=?h(Ai’fl,fl >t?h(A~‘fz,f~) 

Taking inequalities (1.14) into account we obtain 

(Gx,x)~llGIIIlxl12 G/JO llxllz 

(PO = CY: +r:MY: Y:)) 

On the basis of (1.12) we can form the following iterative scheme 

x,+1 = h-~ a’ bl)l+ 4 GJ (-%I) 

It can be shown that {x,) is a minimizing sequence for CD(X). 

To do this we will first obtain the inequality [2] 

Consider the auxiliary 

It is obvious that 

( a’ (xi), x,+1-x, 1 g -a-l II Xn+l “n II2 

functional 

Q (2) = % II z-_(+-a Q’ (xi)) 112, 2 EM 

arg min * @I= [xn-a a’ (xi)1 + = x,+~ 
ZEM 

(1.16) 

(1.17) 

(1.18) 

Hence, the necessary and sufficient condition for a minimum of Y(x) on the element x,,+~ can be 

written in the form of the inequality 
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( @ cGI,lL Z-X,+1) 20, VZEM 

Assuming here that z= x, and taking into account the fact that 

@(xn+r) = xn+t-x, + Q @‘(Xi) 

(1.19) 

we arrive at inequality (1.18). 
Using the formula of finite increments, we can write 

@ (x,+1) = @ (x,) + ( @‘(Xn), xn+1-x, ) + ww 
+ 0 ( G (x,+1 >-x,1, x,+1-x, ), 0 E (0, 1) 

Hence, taking into account the limits (1.16) and (1.18) we obtain 

0 (X,+i) G CD (xn) + (/Jo --(y-l ) II x,+1-x, II*. (1.21) 

It can be seen from (1.21) that for fairly small (r (01 <l/p,,) the sequence (0(x”)} decreases, but 

0((x) P 0, and hence as n + - 

II Xn+l--x, II + 0, @ (xn) -+ @x 2 @* 

(G (x,+1-x,), Xn+l-xn ) -+ 0 

(Note that the convergence of the sequence (x,) in Z&A) does not follow from conditions (1.22).) 

Finally, from (1.20) we have 

lim ( @‘(xi), x,+1-x, ) = 0 
?I-+= 

Now consider, together with (x,) the sequence b.), such that 

Yn+l=bn-a@Oln)l+, @OD)~@*+~ 

where l is a positive number, as small as desired. 

(1.22) 

(1.23) 

(1.24) 

We will show that the distance between the elements x, and y, is uniformly bounded by a certain 

number R,. We have 

IIX,+i-Y,+i II2 = II w (X&-xn-w Oln) + y, +x,-y, II* = 

= II GJ (x&-x,-w cv,) +y, II2 + II X,-Y, II2 

+ 2 ( dJ (x,)-x,-w cv,) +y,, x,-y, 1 (1.5) 

Since the distance between the projection of the elements on the convex set (M) does not exceed the 

distance between the projected elements, we have 

II w (x,)-w (Y,) II G II xn-~@‘(%J-Yn + CY @‘6M 11 

Hence we obtain (I is the identity operator) 

( w (xn) - CJJ oh), x,-y, ) =G II I-a G II II X,-Y, 11’ 

and, consequently, for fairly small (W 

(w&J - x,--w cv,) +Yn> X,-Y,) 4 

< (II 1-a G 11-l) II x,-y, II’ G 0. 

Hence, in view of (1.25) we arrive at the inequality 



The convergence of the method of generalized reaction 151 

II Xn+l-Yn+l II2 6 2 II x,+1-x, II2 + 

+ 2 II yn+1--yn IV + II X,-Y, II2 

Hence we have 

II X,+1-y,+l 11’ < : 11 x&+1-xk II* + 
k=O 

+2 : II,‘k+l-,‘k II* +11x,--Y, 11’ GR; 
k=O 

2% R: = ~ (~(x,)+@cyo) -2@*)+ llx,-Y, I? 
1-cr, P’o 

Here we have borne in mind that (see (1.21)) 

(1-W 

We will now consider 

elementary reduction 

n 

z IIxk+l-xk112 < ;& (@(X,)-Q*) 

k=O 0 0 

n 

IIYk+l-Yk iI* 
% 

z < ~ (@cv,b@*) 

k=O l-W#cc, 

((Yg < l/r,) 

the variational inequality (1.19). Assuming that z=y, in it we obtain after 

0L ( ‘P’(XJ, Yn-Xn) > a (CD’ (Q, xn+l-xn ) + 

+ (X,+1-X,, xn-Y,) + II ++I-+ II2 

Taking relations (1.22), (1.23) and (1.26) into account, it can be shown that 

lim (Cg’(Xjl), Yn-Xn) 3 0 
?I*- 

In view of the convexity of the functional @(x) we have 

a (yn) > a (xn) + ( @’ (x,)9 Yn-xn ) 

Passing to the limit in this inequality and taking (1.27) into account we obtain 

We finally obtain 

i.e. {x”) is a minimizing sequence for the functional O(x) for any x0 E M. 

(1-T 

2. The contact problem considered in Sec. 1 allows of the following energy formulation 

J(uI,uz) + mln 
IA,-&-A<0 

(2.1) 
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Using the sequence of reactions generated by scheme (1.17) we can construct series for the 
displacements from the formulae 

$0 =A-” 
1 v-l-&A, P=ax? +&A (2.2) 

We will show that the series (u,‘“‘} (i = 1, 2) converge to the solution of problem (2.1). 
First of all we have (see (1.16)) 

Hence it follows that the following exist 

lim u(“)4ui*, i=1,2 
i 

n-m 

(2.3) 

(2.4) 

Introducing the Lagrangian 

we can refo~ulate problem (2.1) as follows: 

sup A(ul, tlz, x) -+ min 
XEM UII uz 

@.5) 

Suppose (x,) is a minimizing sequence for Q(X) while (M,,} is a sequence of weakly compact 
sets 

Mn =ixELz (sq: OGxGd, 1 

dn -+w as n-+m 

such that xR E i’$. Consider the a~iliary problem 

(2.6) 

max h(ul,uz,x) -b min (2.7) 
x*n Ulr uz 

Taking into account the fact that the functional h(y, 4, X) is convex in n, and u;, and linear 
in X, and that M,, is a weakly compact set, we can change from (2.7) to the dual problem [3] 

min A(ulrup,x) + max (2.8) 
Ulr uz XEkf, 

The ~~mization problem in (2.8) for fixed x is equivalent to solving the two equations in 
(1.11). In this case 

A(R,uz,x) =-+(x) 

and problem (2.8) takes the form 

Suppose 
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arg min Cp (x) = x,* 
x-n 

Then, taking into account the conditions for constructing the series (M.) we have 

@ (x,) > @ (x,*) > @* 

i.e. (x.*1 is a minimizing sequence for G(x). 
Further, introducing the notation 

Ul,n & Ai’VI-Xn*), Uz,f~ 6 AT’Cfi +Xn*) (2.9) 

and taking into account the fact that the point (z+., r+., u.*) is a saddle point for the func- 
tional A(%, oh, x) in the set (L, x & xM,) (Q), we can write 

We will first show that 

lim uf,” = lim uy)=ur (2.11) 
n-- n-c- 

Consider the combined sequence 

l’Fnj4Ix,,x,*l 

It is obvious that Q(&) + a. and, consequently, the following limits exist n_)- 

Then 

which proves (2.11). 
We will further show that the functions ui * (i = 1, 2) satisfy the limitations of problem (2.1). 

Let us assume the contrary. Suppose a set of non-zero measure R’ c R exists, such that 

UT--@-A>0 on52’ (2.12) 

We will introduce the notation 

“en< (ut-Q-A) d s2 > 0 (2.13) 

Then, by (2.4) the following inequality is satisfied for fairly large values of n 

Kn=J, (U~'-U~'-A)d52> f K (2.14) 

Further, using the left-hand inequality of (2.10) and taking the second relation of (2.1) into 



154 

account, we have 

YE. I. MIKHAWVSKII and V. N. TARASOV 

The last inequality holds for any x E M,. Assuming that 

x(P)= 
d,, PESZ’ 

0, P&2’ 

we obtain 

(2.15) 

c, + --(f~,u~>-(f2,ut)>-= 
n-+m 

It is obvious that relation (2.15) contradicts the condition @(x)30 and, consequently, 
assumption (2.12) is untenable, i.e. 

We will show that 

u,* = u, *-A G 0 almost everywhere on Q (2.16) 

lim <x,*, ul,n-u2,n- A)=0 
?I+= 

(2.17) 

We have from the left-hand side of inequality (2.10) 

(x, u~,,-u~,~-A) < (x;, ul,,--uz,n-A > 

vx=4,, 

Hence it follows that 

(~,*,u~,~-u~,~-A) 20 (2.18) 

since, otherwise, when x=0 we obtain a contradiction. We will assume that a sequence n, 
exists such that 

( Xn*k’ Ul,nk-UZ.nk- A)>a,,>O 

Using the right-hand inequality in (2.10) and assuming in it that u, = %*, u, = uz*, taking 
(2.16) into account we obtain 

J (u 1 ,nk’ ‘2,nk)+‘o -(JW,ut) 

Passing to the limit here we obtain a contradiction with the fact that a, >O. 
Suppose i& (i = 1, 2) are geometrically admissible displacements, i.e. such that, in particular, 

the condition I& -i& = A G 0 is satisfied for them. From the right-hand inequality of (2.10) we 
have 

J @I ,m u2,n )+(x~,u~,~-u~,~--A) Q 

gj(~,,t,)+(xn*,~~--‘iiz-A) G J(Ul, a,) 
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Passing to the limit here and taking (2.11) and (2.17) into account we obtain 

for any ii; E I_.&) which satisfy the second inequality of (1.4) 

Note 1. The iterative scheme (1.17) can be obtained if we formally (not using the weakly compact sets 

A#.) replace (2.5) by the dual problem 

m&r h@,,u,,x) -+ sup 
Us* % XEM 

transfer from it to the minimization problem 

UJ (x) -* inf 
XEM 

and apply the method of gradient projection to this problem. In this case, the Lagrange multiplier can be 
interpreted as a contact reaction. The scalar parameter a, which regularizes the step of gradient descent, 
has no effect on the values of u, and y, determined using the iterative scheme 

3. We will consider the contact problem for two parallel rectangular plates clamped and loaded so that 

the shape of their deflection is cylindrical. To fix our ideas we will assume that the hinge-support 
conditions are satisfied at two opposite edges of the plate (the distance between which is I). We will also 
assume that the upper plate is acted upon by a normal load q(5), while the lower plate experiences only a 
pressure x(5) from the side of the upper plate, when the bowing of the latter exceeds the value of the 
initial gap between the plates A = const. This contact problem can be formulated as follows: 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(4 is the cylindrical stiffness of the plate). Green’s function for bounda~-value problems (3.1) and (3.2) 
has the form 

G (E. t) = A (C-t): + 9 @I .E’ + @ (r) E (3.5) 
I l-t t (I-f) (2 I+) 

A ::- 
6d,’ 

9 (f) = - - 
6dJ ’ 

* @I = 
6d,I 

We will use the method of splitting the initial boundary-value problem into simpler problems, assum- 

ing that the action of the upper plate on the lower plate is described by a function of the form 

x (0) =R,6 It-E,.)+R$ (E-(+1) +q, 69 (3.7) 

E E R,, Ma 1 
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(6(.) is the delta function). Assuming that 

w, cc, v17) = w2 65, rlh 5 E it,, I-E2 I (3.8) 

we obtain 

xg (0 = M 4 (U w &-#1 I-- (E-U-E1 ))I (3.9) 

(H(.) is Heaviside’s function). Using relations (3.6)-(3.9) the bowings of the plates are given by the 

equations 

I l-41 
w1 (5, VI= I G (L t) 4 (0 dr- J G (E, r) 4 (0 dr- 

0 E, 

-R, WE, El I-R, G (b l-E, ) 

1 I-E* 
w2 (E, r)) = j I G (6, 6, -0 4 (0 dr + R, G’k #, I+ R, G (t, Z-t, ) 

F1 

(3.10) 

Using (3.8) and (3.10) we have 

II E2 
I rq W dr = 2 R, E, , J rq (I-r) dr = 2 R, tz (3.11) 
0 0 

El 
I G:-f2)rq(r)=6d,A, i=l,Z (3.12) 
0 

By analysing (3.12) it can be shown that each of them can have only one solution, i.e. the contact region 
is always simply connected. Further, an interesting property of the boundary-value problem considered 
emerges from Eqs (3.7): if as a result of a certain loading of the upper plate (independent of 9) one 

obtains a contact region, the position and extent of this region with respect to 5, and also the values of the 

concentrated reactions, are independent of the load within the contact zone. 

Hence, the solution of the contact problem reduces to realizing an extremely simple algorithm: (1) 

obtain the roots 4, and 5, of Eqs (2.13), (2) determine the concentrated reactions R, and R, from Eqs 

(3.11), and (3) calculate the functions w1 and W, from (3.10). 
Consider the special case when q(e)= q. = const. From (3.12) and (3.11) successively we obtain 

II =51 = Gi=X St,, R, =‘R, = ‘/, qa co (3.13) 

In this case, the condition for obtaining a contact zone has the form 

q0 > 384 A do/l’ 

Taking (3.13) into account we obtain from (3.10) 

40 ui (PI, E < lo 
y&v)= - x 

24 d, vi (I), E, =G 5 < s 2 
(3.14) 
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Note 2. The example considered above is sufficient to show that the series {x,) (see (1.17)), generally 
speaking, does not converge in &(Q). However, as was shown in Sec. 2, the sequences {r.@)) (see (2.2)), 

obtained using {xJ, converges to the solution of the contact problem on average. The operator form of 
the description does not enable us here to show that, in specific problems, the sequences (ui(“)) converge 
to the solution with a certain number of its derivatives. For example, for the system of two cylindrical 
curved plates considered in Sec. 3, we have the relation (see (1.16)) 

(a is the width of the plate). Hence it follows that the sequences &f%v~)/d~] converge on average, while 
{wf”)), (&$‘)Id~ converges unholy with respect to 4. 
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